Dr Peter Smielewski

University of Cambridge

Dr Peter Smielewski is a senior research associate at the Brain Physics Lab, Department of Clinical Neurosciences, University of Cambrige, UK. He specializes in intensive care unit monitoring, data integration and analysis.

He graduated from Warsaw University of Technology, with a Master degree in Electrical Engineering, and subsequently received his PhD at the Division of Neurosurgery, University of Cambridge, UK, where he developed computer-aided methods of non-invasive assessment of cerebral blood flow regulation. He is the main author of a physiological monitoring data collection and real-time analysis software ICM+, by now licensed by Cambridge University to over 140 clinical research centres worldwide, and which incorporates all the methods of assessment of various aspects of cranio-spinal dynamics that he and his colleagues have been developing over the last 25 years.

His current focus includes methodologies for continuous assessment of cerebral autoregulation and cerebrovascular properties and their role in individualised management of traumatic brain injury patients. He is a co-applicant of CENTER-TBI, a large European brain trauma data collection project, and a leader of its ICU High Resolution physiological data acquisition part. He currently has 279 PubMed entries and H-index of 69, with over 14000 citations to date.

dont miss

Listening to the injured brain

New advances in Transcranial Doppler ultrasound have now made it possible to obtain continuous measurements of cerebral blood flow waveforms over prolonged periods of time, measured in hours (or possibly days) rather than minutes. This opens new possibilities for application of TCD to pathologies like acute traumatic brain injury, where single, daily measurements are not sufficient to keep up with their highly dynamic character. When TCD cerebral blood flow velocity measurement is combined with measurement of arterial blood pressure waveform a purpose designed software can extract many parameters helping to track the status of cerebral autoregulation and other cerebrovascular properties like critical closing pressure (arterial pressure at which cerebral flow ceases) and critical closing margins (a ‘safety cushion’ for blood pressure). These in turn, when examined, for example, against intracranial pressure may help to inform selection of individual targets for TBI in ICU, thus aiding in personalised medicine approach.

EVEN MORE SEMINARS

  • Rosanne Tyas: Speaking at the European Neurological Convention

    Rosanne Tyas
    Royal Hospital for Neuro-disability

    Emotional Support and Adaption: Considering emotional aspects of music therapy with people with a neuro-disability.

  • Professor Gus A Baker: Speaking at the European Neurological Convention

    Professor Gus A Baker
    Tribune Neuropsychology Services, University of Liverpool, Walton Centre for Neurology& Neurosurgery

    The additional burden of epilepsy: a psychological and neuropsychological perspective

  • Dr Camilla Nord: Speaking at the European Neurological Convention

    Dr Camilla Nord
    University of Cambridge

    Neurobiological predictors of response to tDCS-enhanced psychological therapy in depression

  • Prof Jon Marsden: Speaking at the European Neurological Convention

    Prof Jon Marsden
    University of Plymouth

    An introduction to the physiology and pathophysiology of eye movements

  • Martin Knight MD FRCS MBBS: Speaking at the European Neurological Convention

    Martin Knight MD FRCS MBBS
    The Spinal Foundation

    Cluneal Nerve Diagnosis and a Radiofrequency Treatment Protocol